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Abstract—Efficient online liveness fault detection is crucial to cloud systems. Most current online liveness fault detection techniques,

such as system layer heartbeating, use a single unreliable detector to detect cloud system liveness. A single unreliable detector

requires a certain amount of time to detect faults to avoid misjudgment, regardless of the type of fault detected. However, many faults

can be detected by other detectors more quickly. Therefore, this article proposes an efficient online liveness fault detection mechanism

for cloud systems that integrates existing detectors to quickly detect faults. We compared the fault detection efficiency of the proposed

mechanism with those of counterpart mechanisms. According to the results, relative to system layer heartbeating without any auxiliary

detection mechanism, our proposed mechanism had a 70.3 percent shorter fault detection time.

Index Terms—Fault detection time, multilayer cloud system, linear layer dependence, online fault detection, transient fault

Ç

1 INTRODUCTION

FAULT detection aims at finding major defects in a system,
and these defects may appear in the system’s compo-

nents. Fault detection is crucial to ensuring the high avail-
ability of systems, and it has been used in a wide variety of
critical applications—such as in cloud computing [1],
nuclear engineering [2], and aerospace systems [3]. For
cloud computing in particular, online fault detection is cru-
cial for ensuring the high availability of cloud systems. Dis-
ruptions in the cloud systems could have negative
consequences. For example, in November 2020, Amazon
Web Services went offline for several hours, resulting in the
unavailability of several types of Internet services such as e-
commerce and news platforms [4]. Online fault detection
for cloud computing is usually used to detect the liveness of
the target application and to ensure high availability by
reducing downtime; it has been applied in VMWare
vSphere [1].

Liveness detection is a common method of online fault
detection [5]. An existing fault detector can be classified as
reliable or unreliable, per the definition proposed in previ-
ous studies [6], [7]. The output of a reliable detector is
always accurate; by contrast, an unreliable detector moni-
tors a target component long term, and the response time
depends on how long the whole system can tolerably sus-
tain such an operation. In practice, reliable detectors are
usually used to detect permanent faults, whereas unreliable
detectors, such as heartbeat detectors [9], are usually used
to detect transient faults—which are faults of limited

duration, caused either by temporary component malfunc-
tion or external interference [8]. Note that a transient fault
must include a maximum duration parameter; faults that
last longer are interpreted as permanent by the recovery
algorithm.

In cloud computing, the most common present-day liv-
eness fault detection technique is system layer heartbeating
[9]. This technique considers the entire computing system
to be a black box. It detects only heartbeats that are regularly
received from the target; if no response is received from the
target after a user-defined waiting period, an alert is raised.
However, fault detection with only the system layer heart-
beating technique is inefficient because a single detector
cannot distinguish faults in the system—by virtue of the
detector’s application of the same method to all faults. How-
ever, certain faults can be quickly detected by other detec-
tors. For example, when the system power supply is
damaged, a power supply detector can quickly detect the
fault. By contrast, a detector employing system layer heart-
beating can detect faults only after an initial setup time. In
other words, the use of other efficient detectors in fault
detection can reduce the average fault detection time. We
can divide the systems into component groups and install
detectors that are most suited to the components in each
group. We can then develop an efficient detection strategy
that integrates the detection results of each group of
detectors.

Several studies [10], [11], [12] have noted that, a cloud
system can provide infrastructure as a service (IaaS), plat-
form as a service (PaaS), or software as a service (SaaS) to
end users [38]. They also mentioned that a cloud system
comprises numerous components and can be abstractly rep-
resented as members of nonoverlapping groups. The most
common approach is to group these components into sev-
eral layers. For example, in the IT industry [32], [39], a cloud
system is usually segmented into nine layers (stacks), the
functions of which range from networking infrastructure to
support for user applications (Fig. 1a). Specifically, an IaaS

� The authors are with the Department of Computer Science and Information
Engineering, National Central University, Taoyuan City 32001,
Taiwan. E-mail: {yenlinlee811109, deronliang}@gmail.com, wjwang@csie.
ncu.edu.tw.

Manuscript received 14 Aug. 2020; revised 20 July 2021; accepted 22 July 2021.
Date of publication 29 July 2021; date of current version 2 Sept. 2022.
(Corresponding author: Wei-Jen Wang.)
Digital Object Identifier no. 10.1109/TDSC.2021.3100680

3464 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 19, NO. 5, SEPTEMBER/OCTOBER 2022

1545-5971 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: National Central University. Downloaded on September 20,2024 at 10:24:50 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-8804-5542
https://orcid.org/0000-0001-8804-5542
https://orcid.org/0000-0001-8804-5542
https://orcid.org/0000-0001-8804-5542
https://orcid.org/0000-0001-8804-5542
https://orcid.org/0000-0002-7036-3101
https://orcid.org/0000-0002-7036-3101
https://orcid.org/0000-0002-7036-3101
https://orcid.org/0000-0002-7036-3101
https://orcid.org/0000-0002-7036-3101
mailto:yenlinlee811109@gmail.com
mailto:deronliang@gmail.com
mailto:Department of Computer Science and Information EngineeringNational Central UniversityTaoyuan City32001Taiwan
mailto:Department of Computer Science and Information EngineeringNational Central UniversityTaoyuan City32001Taiwan


system comprises four of these nine layers (networking to
virtualization), a PaaS system comprises seven of these nine
layers (networking to runtime), and an SaaS system com-
prises all nine layers. Each layer can be further divided con-
ceptually. Studies [33], [37] have provided fine-grained
analyses of a virtualized compute host comprising server,
virtualization, and operating system (OS) layers (Fig. 1a);
the server layer functions as the host hardware and host OS
layers (Fig. 1b). On the basis of this idea, a finer-grained
view of the server, virtualization, and OS (guest OS) layers
is illustrated in Fig. 1c. First, the server layer is divided into
the following layers: power component, hardware (CPU),
host OS, and network (network service at host OS) layers.
Second, the virtualization layer is named the VM process
layer. Third, the OS (guest OS) layer is divided into the
guest OS and VM network layers.

On the basis of the layering approach, we propose instal-
ling a detector for each layer in a fine-grained architecture
(Fig. 1c) to accelerate fault detection, as illustrated in Fig. 2.
That is, a fast reliable detector can be used if all faults in a
particular layer, such as the power layer, are permanent;
otherwise, an unreliable detector should be used, such as
the host OS layer. As a result, a virtualized compute host in
a cloud system can be viewed as a multilayer system, and
the liveness of each layer can be detected by either a reliable
or an unreliable detector, as illustrated in Table 1. In such
an approach, fault detection becomes an online faulty layer

identification problem. Notably, we can generalize the
approach to different multilayer cloud systems, where we
can install a detector on each layer of a multilayer cloud sys-
tem for rapid fault detection.

To provide an efficient method of identifying the faulty
layer, we propose grouping components into linearly
dependent layers. Such dependence between layers is a
common feature of multilayer systems, as noted by [11],
[12], [29], and we term it linear layer dependence. Trihinas
et al. [11] noted that cloud systems comprise multiple layers
and are associated with many service paradigms. They uti-
lized this characteristic of cloud systems to design and
implement an automated, layered cloud monitoring frame-
work. Wu et al. [12] also found that a task layer fault is a
high layer fault that encapsulates many low layer faults—
such as compute node and host OS crashes. In summary,
online liveness fault detection with linear layer dependence
has the following major properties:

� When a fault occurs in a multilayer system, the fault
must exist in one of the layers.

� A fault in a lower layer can impair the liveness of all
the components in the upper layers; by contrast, a
higher layer fault cannot affect the liveness of lower
layered components.

� A transient fault in a lower layer can temporarily dis-
rupt the liveness of all components in the upper layers.

� Transient fault detection relies on heartbeating and
thus requires a long detection time.

� If the duration of a transient fault exceeds the sys-
tem’s tolerance time, the fault should be interpreted
as permanent.

� A permanent fault uses a reliable detector that
requires a short response time.

With various layer detectors and linear layer depen-
dence, we can efficiently determine the faulty layer without
needing to conduct fault detection for all layers. However,
unreliable detectors still take a long time to detect faults. To
solve this problem, we propose dividing the detection pro-
cess used by the unreliable detector into two phases, as
illustrated in Fig. 3. The first phase determines whether the
fault lies in the identified layer, in which liveness can be
detected quickly. The second phase determines whether the
fault is transient when the layer is detected to be the faulty
layer. This two-phase approach decreases the average fault
detection time.

This study addresses an efficient online liveness fault detec-
tion mechanism for multilayer cloud systems, specifically for

Fig. 1. Different abstractions of the architecture of a virtualized compute
host in a cloud system. (a) Three layers (in white) representing a virtual-
ized compute host in the nine layers from the IT industry; (b) correspond-
ing four layers of a virtualized compute host in [33], [37]; (c) finer-grained
view of a virtualized compute host which is able to provide rapid fault
detection.

Fig. 2. Layers and their detectors in a virtualized compute host in a cloud
system.

TABLE 1
Layer Detector Information of Fig. 1

� The network layer detector has a long response time because it must consider
transient faults such as network busy.
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virtualized compute hosts on the cloud. The proposed mecha-
nism 1) divides a virtualized compute host in a cloud system
into linearly dependent layers, 2) integrates several existing
detectors for these layers, and 3) uses an optimal tree-based
algorithm to quickly detect and identify the faulty layer; the
optimal fault detection tree is built through dynamic program-
ming. The proposed mechanism comprises three major steps:
1) confirming fault occurrence, 2) identifying the faulty layer,
and 3) confirming fault transience, if required. The contribu-
tions of this study are as follows:

1) To determine the faulty layer, we propose an optimal
tree-based fault detection algorithm and demon-
strate that it maximizes efficiency.

2) We applied the proposed mechanism to a real cloud
system. The experimental results demonstrate that,
the proposed mechanism has a fault detection time
70.3 percent shorter than that required for system
layer heartbeating [9] without an auxiliary detection
mechanism.

The remainder of this paper is organized as follows: Sec-
tion 2 introduces the related techniques. Section 3 describes
the multilayer system and the proposed mechanism. Sec-
tion 4 details the proposed fault detection algorithm. Sec-
tion 5 presents the experimental results from an application
of the proposed mechanism. Section 6 discusses the feasibil-
ity of applying the proposed mechanism to parallel detec-
tion. The final section summarizes this work and suggests
future research directions.

2 RELATED WORK

In this section, we first introduce existing online liveness
fault detection methods for cloud systems before introduc-
ing tree-based fault detection methods that can be used to
identify the layer in which a fault occurs. Finally, we present
a summary of the properties of the related methods pro-
posed in the literature.

Many current online liveness fault detection methods for
cloud computing detect liveness of the software services,
physical hosts, VMs or the whole system [1], [9], [17], [24],
[25], [26], [27], [34], [35]. Because these methods are similar
to system layer heartbeating, wherein only a single method
is used to detect all faults, their detection time is consider-
ably lengthened by faults that require long detection times,
such as transient faults. In short, these methods perform
inefficiently when detecting certain fault types.

By exploiting linear layer dependence, tree-based meth-
ods can identify the faulty layer. Upon reviewing the litera-
ture ([15], [16], [18], [23], [28]), we noted that tree-based
methods are common in electrical engineering. However, in
electrical engineering, diagnostic tests apply a diagnostic
tree to diagnose a fault after a system has failed [28], which
contrasts with the real-time detection desired for our pro-
posed method. We considered two tree-based methods [18],
[23] as examples. Because both are applied after a system
has failed, they are not designed for online fault detection
or transient fault detection. In other words, directly using
these two methods for online fault detection or transient
fault detection may result in fault misdiagnosis. The cost of
misdiagnosis is high because the fault in the target system
not only remains unaddressed but may worsen. In addition,
because the relationship between faults is complex (specifi-
cally, nonlinear), these two methods are general and
heuristic.

In summary, these two methods [18], [23] build two trees
that are used for offline detection and are not always opti-
mal. By contrast, our method can be used for optimal online
fault detection and transient fault detection, as demon-
strated in our results. The trees built by the two aforemen-
tioned methods are applicable for online detection only for
a limited set of cases, and, only in a subset of those cases,
can they achieve the same efficiency as our optimal trees
can. The reasons for this are twofold:

� The optimal online detection tree is a special element
of the tree set used for online detection.

� The tree set used for online detection is a subset of
the trees used for offline detection.

We provide evidence for the aforementioned claim using
an example in Section 5.

2.1 System Layer Heartbeating

A heartbeat is a periodic signal generated by hardware or
software to indicate the liveness of the sender. In general,
the sender periodically sends a heartbeat. When the receiver
does not receive a heartbeat within a given period (timeout),
the sender is determined to have failed [20]. Most liveness
fault detection methods for cloud systems use system layer
heartbeating, which detects the liveness of the target system
by using the heartbeating mechanism. For example, Gokh-
roo et al. [24] and Villamayor et al. [25] have used system
layer heartbeating to detect VM liveness; Yadav et al. [26],
Rahman et al. [9], and Zhang et al. [17] have used it to detect
physical host and network connection liveness; and Liu
et al. [27], Soualhia et al. [34], and Lai et al. [35] have used it
to detect cloud service liveness. The length of the timeout
for system layer heartbeating is a key parameter. If the time-
out period of each heartbeat is too short, the detector mis-
judges the fault, but if the period is too long, the detection
efficiency is low. Accordingly, system layer heartbeating is
sensitive to detection time [14]. Therefore, system layer
heartbeating [24], [25], [26], [27], [34], [35] carries a trade-off
between accuracy and efficiency. Studies [9], [17] have
investigated the optimization of the timeout period of the
system layer heartbeating; these studies have demonstrated
that detection accuracy can be improved by establishing an
adjustable timeout period based on historical data.

Fig. 3. Use of two-phase fault detection, where the response times are
all assumed values.
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VMware vSphere [1] provides an alternative system layer
heartbeating approach, which treats the detection target as
two independent systems (specifically as hardware and virtu-
alization systems). In particular, VMware vSphere uses two
independent system layer heartbeating detectors to detect the
liveness of VMs and hosts separately. In VMWare vSphere, a
master host monitors the network heartbeats of subordinate
hosts every second. When the master host stops receiving
these heartbeats from a subordinate host, it checks whether
the subordinate host is exchanging heartbeats with one of the
datastores to determine whether the fault type is host fault or
network isolation. Furthermore, VMware vSphere evaluates
whether each VM is running by checking for regular heart-
beats and I/O activity from the VM. If no heartbeat or I/O
activity is received, VMware vSphere determines that the VM
has failed, and the VM is thus rebooted to restore service.

2.2 Zhao et al.Method

Zhao et al. [18] proposed a fault detection method for perma-
nent faults on hybrid systems and used a printer as an exam-
ple. In their method, after a fault is detected, the decision tree
diagnostics are triggered and executed offline. The recorded
data are subsequently analyzed and used for decision tree
diagnosis, which identifies no transient faults. In addition,
because the relationship between faults is irregular, the
aforementioned method is heuristic. The definition of detec-
tor cost used by Zhao et al. also differs fromours. Specifically,
they considered two types of detectors, built-in sensors and
virtual sensors, where built-in sensors have no detection cost
but virtual sensors incur additional detection costs.

2.3 Wang et al.Method

Wang et al. [23] proposed a method for identifying system-
level faults. In their method, if there is a fault in the system,
the fault must occur prior to fault diagnosis. Therefore, their
method is used for offline fault diagnosis and cannot detect
transient faults. They also considered faults to be depen-
dent; because these dependencies were complex (i.e., irreg-
ular), their method is heuristic.

2.4 Summary

Table 2 presents a summary of the properties of methods
proposed in the literature. Most existing methods have an
architecture based on system layer heartbeating because
such an architecture is easy to implement. Such methods
use one system-layer heartbeating detector; by contrast,
very few methods, such as VMware vSphere, use two inde-
pendent system-layer heartbeating detectors. The operation
of VMware vSphere indicates that fault detection can be
more efficient if more layers are used. Tree-based detection
methods [18], [23] have been designed for offline hardware
fault diagnosis in which the hardware is organized as a
multilayer system. These methods cannot be used directly
for online liveness detection. By contrast, our proposed
mechanism can be used for online liveness detection.

3 MINIMIZATION OF MULTILAYER FAULT
DETECTION TIME

We focused on minimizing the time required for detecting
faults in multilayer systems. In our proposed method,

transient faults are identified and then ignored. Thus, noth-
ing happens when our proposed method detects that the
target system has recovered from a transient fault. In gen-
eral, a multilayer system comprises N layers from layer 0 to
layer N � 1. In each layer, a detector can be installed to
detect the faults that have occurred in that layer. Given that
a fault has occurred, the conditional probability of the fault
occurring in layer Li is Pi, where layers Li to LN�1 are
expected to fail because of the fault in Li. A fault may be
transient or permanent. A transient fault in layer Li can
result in temporary failure in layers Li to LN�1, but the sys-
tem reverts to a not faulty state after some time. A perma-
nent fault in layer Li can result in permanent failure in
layers Li to LN�1. To detect a fault, the detection mechanism
can ask a layer detector to conduct fault detection, and a
detector in layer Li requires Ti seconds to complete detec-
tion and return the result. Therefore, the problem of online
liveness fault detection for multilayer cloud computing sys-
tems is defined to find whether a permanent fault exists and
to find the faulty layer of the system. To simplify the prob-
lem, we make two assumptions. First, we assume that detec-
tors always return correct results because our focus is rapid
liveness detection rather than Byzantine failure. Second, we
assume that no other faults occur between the time when a
fault occurs to the time when the recovery process ends.
The symbols used in this paper are defined in Table 3.

Based on the problem defined above, we propose a fault
detection mechanism that efficiently detects permanent
faults in a multilayer system. According to Alwi et al. [21],
when a fault occurs in a system, the main problems to be
addressed are threefold: raising the alarm, accurately diag-
nosing the fault, and deciding how to handle the fault. Simi-
lar to our mechanism, their fault detection mechanism
proceeds according to the first two of the following steps;
however, our mechanism adds a transient fault confirma-
tion step, as illustrated in Fig. 4.

� First step: In this step, we must determine whether a
fault has occurred. This step can be achieved
through continuous detection in the highest layer,

TABLE 2
Summary of the Related Work

� The detection time is measured based on the system configuration for
VMware in [13]. Note that the paper [13] only showed the downtime for each
fault cases where downtime is the sum of detection time and recovery time.
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LN�1. After a fault is detected, if a lower layer exists,
we perform the second step; otherwise, we perform
the third step.

� Second step: In this step, a fault detection algorithm
can be utilized to find the faulty layer. Note that the
fault detection algorithm affects the efficiency of
fault detection.

� Third step: In this step, the aim is to determine
whether the fault is a permanent fault and to return
the result. Note that for a layer with a possible tran-
sient fault, more time is required for detecting tran-
sient faults; for other layers, one needs only to
determine whether the fault still exists. Here, we can
use a highly rapid fault detection approach to verify
the existence of the fault; for example, a rapid ping
can be used to verify the liveness of the system. If the
detector of the faulty layer does not respond within
the user-defined waiting period, the fault is consid-
ered a permanent fault. If the fault is permanent, the
faulty layer is returned as a result.

The goal of the fault detection mechanism is to detect per-
manent faults in the target system. However, transient faults
may occur and obfuscate detection. Because a transient fault
occurs for a limited period, when it disappears, the system
state changes from faulty to not faulty, and the fault detec-
tion algorithm in the second step may identify the wrong
faulty layer. Five events are crucial to fault detection:

� tfo: a transient fault occurs
� tfd: the transient fault disappears
� fss: the first step starts
� sss: the second step starts
� tss: the third step starts
Transient faults must occur first to trigger fault detection,

and the corresponding partial event order is tfo ! fss !
tfd. The partial event order of fault detection is fss ! sss !
tss. In addition, because we assume that only one fault
occurs before the fault recovery phase, we need not consider
the problem of a second fault, which may cause the fault
confirmation to fail. To ensure that all transient faults can be
identified by the fault detection mechanism, we analyze all
possible scenarios. On the basis of the two partial orders,
three possible scenarios can be established as follows:

� first scenario (Fig. 5): tfo! fss! tfd! sss! tss
� second scenario (Fig. 7): tfo! fss! sss! tfd! tss
� third scenario (Fig. 9): tfo! fss! sss! tss! tfd
In the following subsections, we discuss the accuracy of

the proposed fault detection mechanism for the three

scenarios. The proposed mechanism must return “not
faulty” for the three scenarios.

3.1 First Scenario

This scenario involves two cases:

1) For the first case, the transient fault may not be found
in the first step of the proposed mechanism; this
occurs when the fault has disappeared before the
highest layer is detected in the first step. Accordingly,
in this case, the proposed mechanism returns “not
faulty” and returns to the fault detection routine.

2) For the second case, the fault is identified in the first
step. In this case, the transient fault is expected to dis-
appear before the start of the second step, according to
the description for this scenario. Consequently, in the
second step, the mechanism is expected to identify the
presence of the fault at the highest layer (Fig. 6). Subse-
quently, in the third step, the mechanism is expected
to verify the existence of the fault or continuously
detect the liveness of the highest layer. After verifying
the existence of the fault with any of the two verifica-
tion actions, the mechanism returns “not faulty”
because the transient fault has disappeared.

3.2 Second Scenario

The transient fault is denoted as Fj. The proposed mecha-
nism always returns “faulty” in the first step and begins

TABLE 3
Definitions of Symbols

Symbol Description

N Assume that there areN layers
Li The ith layer, (02i2N � 1)
Fi The fault of Li, (02i2N � 1)
Di The detector for Li , (02i2N � 1)
Ti The response time ofDi , (02i2N � 1)
Pi The conditional probability of Fi (fault percentage),

(02i2N � 1)

Fig. 4. Fault detection mechanism.

Fig. 5. First scenario of transient fault in fault detection.
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finding the faulty layer of the system in the second step. The
second scenario also involves two cases.

1) For the first case, the transient fault Fj may disap-
pear before detector Dj performs fault detection, and
detectorDj must return “not faulty.” However, other
layers higher than layer Lj may have already been
detected as faulty. Consequently, in the second step,
the mechanism returns a wrong faulty layer number
based on the linear layer dependence. That is, any
layer higher than layer Lj could be erroneously iden-
tified as the faulty layer, as illustrated in Fig. 8. Sub-
sequently, in the third step, the mechanism verifies
the existence of the fault and then returns “not
faulty” because the transient fault has disappeared
in the second step.

2) For the second case, the transient fault Fj has been
detected by detector Dj. In the second step, the
mechanism returns the faulty layer Lj based on the
linear layer dependence. In the third step, the mecha-
nism then continuously detects the liveness of the
selected layer Lj. Because the transient fault has dis-
appeared, in the third step, the mechanism returns
“not faulty.”

3.3 Third Scenario

The third scenario is similar to the second case of the second
scenario. The first and second steps involve the same behav-
iour as those observed in the first two scenarios. Therefore,
in the second step, the mechanism returns the faulty layer

Lj, as presented in Fig. 10. Subsequently, in the third step,
the mechanism continuously detects the liveness of the
selected layer Lj during the user-defined waiting period.
Because the duration of the transient fault Fj must be less
than the user-defined waiting period for Fj, the mechanism
in the third step eventually returns “not faulty.”

Per the preceding discussion, the fault detection mecha-
nism can always identify transient faults. The third step,
which is based on the faulty layer, involves either detecting
the faulty layer within the user-defined period or detecting
a layer that is 1) higher than or equal to the actual faulty
layer and 2) requires a shorter response time.

Because the fault detection mechanism is general, it can
be applied to other liveness fault detection mechanisms. For
example, because the system layer heartbeating method
conceives of the entire computing system as a single layer,
the method comprises the first and third steps. Our pro-
posed mechanism, by contrast, can utilize various fast
detectors to determine the faulty layer in the second step; it
thus comprises all three steps. To efficiently identify the
faulty layer in the second step, we designed a fault detection
algorithm for a multilayer system, and it is detailed in the
next section.

4 PROPOSED FAULT DETECTION ALGORITHMS

In this section, we describe a proposed fault detection algo-
rithm, the binary search tree algorithm, and a naive algo-
rithm. Note that the naive algorithm only considers linear
layer dependence, and the proposed algorithm considers
linear layer dependence, Ti, and Pi. Although the proposed
algorithm takes time to build a binary search tree, the binary
search tree can be used indefinitely until the to-be-detected
system changes.

The steps of the naive algorithm are as follows:

� Step 1: After observing FN�1 in the highest layer N �
1, execute the detection method from DN�2 to D0

until its result is FALSE (TRUE represents a numeri-
cal anomaly), and then name the last detectorDk.

� Step 2: If every detector returns TRUE, then the
faulty layer is layer L0; otherwise, the faulty layer is
Lkþ1.

Fig. 7. Second scenario of transient fault in fault detection.

Fig. 9. Third scenario of transient fault in fault detection.

Fig. 6. Detection results of each layer detector in the second case of the
first scenario.

Fig. 8. Possible detection results from each layer’s detector in the
second scenario.

Fig. 10. Possible detection results of each layer’s detector in the third
scenario.
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4.1 Binary Search Tree Algorithm

Given an N-layer system, a fault detection mechanism can
ask any layer detector to conduct fault detection on that
layer. When a detector in layer Li detects a fault, the fault
detection mechanism can skip the detection for layers higher
than Li because of linear layer dependence, as illustrated in
Fig. 11. This is a typical problem to which the binary search
algorithm can be applied. However, because each layer has
its own response time Ti and conditional fault probability Pi,
the self-balancing binary search [36] does not always identify
faults efficiently. For example, as displayed in Fig. 16, the
optimal tree in the second step is a rightist tree rather than a
balanced tree. To remedy this problem, we propose a new
algorithm based on a binary search tree that considers Ti and
Pi, thereby minimizing fault detection time. Therefore, the
proposed algorithm necessarily outperforms other types of
binary search tree algorithms when considering Ti and Pi.
Some crucial concepts are defined as follows.

Definition 1. ADT ða; b; cÞ is a symbol representing the average
detection time (ADT) of a tree comprisingDa toDb, with rootDc.

Definition 2. T ða; bÞ is a symbol representing the ADT of the
optimal tree; the optimal tree is the tree with the smallest ADT
among all possible trees and is composed ofDa toDb.

The binary search tree with the smallest ADT for identi-
fying the faulty layer can be found by building all possible
binary search trees and comparing their ADTs. The equa-
tions used to calculate the ADT of the binary search trees
and identify the optimal tree are described as follows.

Fig. 12 presents an example of a binary search tree. In
Fig. 12, fault detection at the root of the tree (Di) should be
performed regardless of what type of fault occurs. Dj or Dk

is then queried respectively if the first result is TRUE or
FALSE; TRUEmeans that a component in this layer does not
respond. Therefore, the invocation probability of Dj is equal
to the sum of P0 to Pi divided by the sum of the conditional
probability of all faults, and the invocation probability of Dk

is equal to the sum of Piþ1 to PN�1 divided by the same
denominator. In other words, the invocation probability of
each node in the binary search tree is related to the range of
its subtrees and the conditional probability of each fault. The
ADT of this binary search tree (Fig. 12) can be denoted as
ADT ð0; N � 2; iÞ, which can be calculated as follows:

ADT ð0; N � 2; iÞ ¼ Ti þ
Pi

m¼0 Pm
PN�1

m¼0 Pm

� Tj

þ
PN�1

m¼iþ1 Pm
PN�1

m¼0 Pm

� Tk þ � � � :
(1)

Subsequently, (1) can be reorganized using the concept of
the subtrees, as follows:

ADT ð0; N � 2; iÞ ¼ Ti þ Si
m¼0Pm

S
N�1
m¼0Pm

ADT ð0; i; jÞ

þ S
N�1
m¼iþ1Pm

SN�1
m¼0Pm

ADT ðiþ 1; N � 2; kÞ:

(2)

ADT ð0; i; jÞ is the ADT of the left subtree, and ADT ðiþ
1; N � 2; kÞ is the ADT of the right subtree. Equation (2)
reveals that if we try each candidate root i to determine
which detector Di to use as the root of an optimal binary
search tree comprising detectors Da to Db, where a � i � b,
then we are guaranteed to find the optimal binary search
tree. Therefore, the ADT of the optimal tree, T ða; bÞ, can be
calculated as follows:

T ða; bÞ ¼ mini¼a�b

�

Ti þ Si
m¼aPm

S
bþ1
m¼aPm

T ða; i� 1Þ

þ S
bþ1
m¼iþ1Pm

Sbþ1
m¼aPm

T ðiþ 1; bÞ
�

; if a � b:

(3)

Because a binary search tree where a > b does not exist,
(3) can only be used when a � b.

4.2 Proof of Optimality of Proposed Algorithm

We now prove that the binary tree built by the proposed
method is optimal. Let S be the set of trees containing all
binary trees with k detectors Da to Db, where b ¼ aþ k� 1
and k � 1. Then (3) can find the tree with the smallest ADT
in S. This proof is based on the following lemma.

Lemma 1. If a tree X (X 2 S) is found by (3), then there is no
tree Y (Y 2 S) such that ADT of Y < ADT ofX.

Proof. A binary tree can be divided into three parts: the
root, left subtree, and right subtree. Equation (3) reveals
that it uses each possible Di as the root respectively,
where a � i � b, to find the optimal tree. To be precise, (3)
traverses all possible trees in S to find the optimal tree.
Therefore, the ADT of X is equal to the minimal ADT
among the elements in S. That is, the ADT of each ele-
ment in S cannot be smaller than the ADT of X. Because
the existence of Y contradicts these facts, Y does not exist;
thus, the proof is complete. tu

Fig. 11. State of all layers when a fault occurs at layer j.
Fig. 12. Proposed binary search tree.
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4.3 Binary Search Tree Algorithm Based on
Dynamic Programming

According to (3), the problem of building an optimal binary
search tree is a typical optimization problem, and all the
conditions must be met before dynamic programming can
be applied. We now present an example to illustrate the bot-
tom-up approach of dynamic programming.

This example features a five-layer system, L0 to L4,
where D0 to D3 are used to build a binary search tree. The
computation for finding an optimal binary search tree
T ð0; 3Þ is presented in Fig. 13. A table for recording the opti-
mal results of the subproblems should be filled from left to
right and then from bottom to top, as illustrated in Fig. 14.

After detailing the concept underlying the application of
dynamic programming, we explain the algorithm for find-
ing the optimal binary search tree (Algorithm 1) as follows.

Algorithm 1. tree building

Input: detector response time list dtime list, conditional fault
probability list p list

Output: <ADT tree time , Binary Search Tree tree>
1: set a global variable time list
2: set a global variable tree list
3: set a global variable probability list = p list
4: list length = length of dtime list
5: for index ¼ 0 to list length -1 do
6: time list½index	½index] = dtime list½index]
7: tree list½index	½index] = [index]
8: end for
9: for size ¼ 2 to list length do
10: for x ¼ 0 to list length-size do
11: y = x+size-1
12: op time, op tree = find optimal subtree(x, y)
13: time list½x	½y] = op time
14: tree list½x	½y] = op tree
15: end for
16: end for
17: tree time = time list½0	½list length� 1]
18: tree = tree list½0	½list length� 1]
19: return <tree time; tree>

We use Algorithm 1 to find the optimal binary search tree
structure and its ADT through dynamic programming and
Algorithm 2. In Algorithm 1, the input variables dtime list
and p list are lists, where dtime list stores the response
time of the detectors from T0 to TN�2 and p list stores the
conditional probability of the faults from P0 to PN�1. Lines
1–3 of the algorithm declare three global variables,
time list, tree list, and probability list, which are used in
both Algorithms 1 and 2. The variable time list is an ðN �
1Þ 
 ðN � 1Þ matrix that stores the ADTs of subtrees, and
the variable tree list is an ðN � 1Þ 
 ðN � 1Þ matrix that

stores the structures of subtrees. Note that time list½m	½n	 is
used to store the ADT of the subtree comprising detectors
Dm to Dn, and tree list½m	½n	 is used to store the structure of
the subtree comprising detectors Dm to Dn. The for loop of
lines 5–8 initializes the values of time list½index	½index	 and
tree list½index	½index	. The for loop of lines 9–16 then uses
Algorithm 2 to compute time list½x	½y	 and tree list½x	½y	 for
all 0 � x < y � ðN � 2Þ. In the first iteration, when size = 2,
the loop computes time list½x	½xþ 1	 and tree list½x	½xþ 1	
for x ¼ 0; 1; . . . ; ðN � 3Þ. The second iteration, with size = 3,
computes time list½x	½xþ 2	 and tree list½x	½xþ 2	 for x ¼
0; 1; . . . ; ðN � 4Þ, and so forth. Finally, Algorithm 1 returns
the ADT and structure of the optimal binary search tree
comprising detectorsD0 toDN�2.

Algorithm 2. find optimal subtree

Input: beginning layer number i, end layer number j
Output: <ADT op time, Binary Search Tree op tree
1: op time = maximum number
2: for root ¼ i to j do
3: if (no left subtree) then
4: ltree time = 0
5: else
6: ltree time = time list½i	½root� 1]
7: end if
8: if (no right subtree) then
9: rtree time = 0
10: else
11: rtree time = time list½rootþ 1	½j]
12: end if
13: for ind ¼ i to root do
14: left probability += probability list½ind]
15: end for
16: for ind ¼ rootþ 1 to jþ 1 do
17: right probability += probability list½ind]
18: end for
19: p = left probability + right probability
20: ltree p = left probability � p
21: rtree p = left probability � p
22: time = time list½root	½root] + ltree p * ltree time + rtree p

* rtree time
23: if (time < op time) then
24: op time = time
25: record the tree structure into op tree
26: end if
27: end for
28: return <op time; op tree>

Algorithm 2 is a subfunction of Algorithm 1. In Algo-
rithm 2, the input variables i and j are integers, which repre-
sent an optimal binary search tree to be found that

Fig. 13. Recursion tree for computation of T ð0; 3Þ.
Fig. 14. Table for recording T ða; bÞ; the table is rotated so that the diago-
nals run horizontally.
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comprises detectors Di to Dj. Equation (3) demonstrates
that the for loop of lines 2–27 tries each candidate index root
to determine which detector Droot to use as the root of the
optimal binary search tree. In lines 3–7 and lines 8–12, the
procedure yields the ADTs of the optimal left subtree and
optimal right subtree, respectively. In lines 13–21, the proce-
dure computes the invocation probabilities of the left and
right subtrees. Subsequently, the procedure computes the
ADT in line 22, based on (2). In lines 23–26, as long as the
procedure finds a more optimal detector Droot to use as the
root, it saves the current ADT and tree structure in op time
and op tree, respectively. Finally, Algorithm 2 returns a
data structure comprising op time and op tree after the loop
ends.

As evident in the preceding discussion, an optimal
binary search tree can be built by the proposed algorithm.
The time complexity of a naive and optimal binary tree is
Oðn2Þ and Oðlog nÞ, respectively. Therefore, the proposed
algorithm is more efficient.

5 PERFORMANCE EVALUATION IN A MULTILAYER

CLOUD COMPUTING SYSTEM

In this section, we test the performance of our proposed
mechanism by applying it on a real cloud computing system
(OpenStack). We implemented a fault detection system
based on the proposed mechanism and algorithms (Fig. 15).
This cloud computing system comprises a detection
machine along with several virtualized compute hosts (in
the compute pool) to be detected. The machine specifica-
tions are presented in Table 4. The fault detection system
operates on the detection machine and can query all layer
detectors. Based on the liveness of each layer, all layer
detectors can return only TRUE or FALSE, where TRUE
indicates that the layer is faulty and FALSE indicates that
the layer is not faulty. The liveness of each layer is deter-
mined from the perspective of the user; that is, the layer is
not faulty only when the user can recognize that the layer is

alive. A compute host to be detected can be abstracted as
comprising a host part and a VM part. The host part com-
prises four layers, namely, the power, hardware, host OS,
and network layers, of which the host OS layer and the net-
work layer have medium and long transient faults respec-
tively. The VM part comprises three layers as presented in
Table 5: the VM process, guest OS, and VM network layers,
of which the guest OS layer and the VM network layer have
short transient faults.

With regard to the channel for querying the detector, the
detectors for the VM network, guest OS, and VM process
layers return results over the network because the user also
controls the VM through the network. The detectors for the
host OS, hardware, and power layers return results via the
intelligent platform management interface (IPMI) channel.
Because the response time of the VM network, guest OS,
and host OS layer detectors are relatively short, these detec-
tors can perform complete detection. Therefore, in this case,
only detection by an unreliable detector in the network layer
is divided into two phases. The user-defined waiting period
for the general network layer detector is 30 s. In the pro-
posed mechanism, we set the fault detection timeout period
to 1 s (in the second step) and the transient fault detection
timeout period to 29 s (in the third step). In addition, we
assume that the fault detection system can query only one
layer detector at a time. We made this assumption consider-
ing the fact that many layer detectors share the same chan-
nel, such as the IPMI [13].

We then compared the performance of two detectors—
one with no auxiliary detection mechanism (system layer
heartbeating) and one with an additional detection mecha-
nism (our proposed mechanism)—in handling faults that
we injected into a virtualized compute host in the cloud
computing system.

We now demonstrate that our proposed mechanism per-
formed well in the cloud computing system. To construct
the binary search tree, we used data from Lu’s report [22]
on the number of outages and outage types of two clusters:
Platinum and Titan (Table 6). Because the data in Table 6
cover only three layers and because our virtualized com-
pute host has seven layers, we mapped the software layer
described in Table 6 to the host OS, network, VM, guest OS,
and VM network layers in our system. To estimate the fault

Fig. 15. The user interface to enable layer detectors for the proposed
mechanism on OpenStack.

TABLE 4
Machine Information

Role Machine type Operating system

Detection machine ASUS MD790 Ubuntu 16.04

Compute hosts ASUS MD790 Ubuntu 16.04

TABLE 5
Description of Each Layer

Layer Detector Faults

VM Network ICMP query Permanent and
transient faults

Guest OS Watchdog in VM Permanent and
transient faults

VM Process Software detector
based on Libvirt

Only permanent faults

Network ICMP Permanent and
transient faults

Host OS Watchdog in host Permanent and
transient faults

Hardware IPMI Only permanent faults

Power IPMI Only permanent faults
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percentages in the virtualized compute host, we used the
average fault percentages listed in Table 6; we assumed the
fault percentages of the five layers to be equal. Therefore,
the percentages of the faults for the five layers should be
80:3%=5 ¼ 16:1%. The hardware and the power layers are
unchanged, and their fault percentages should thus be 2.6
and 17.2 percent, respectively. The fault percentages Pi are
listed in Table 7. The table also lists the response time Ti for
each layer detector Di. In this case study, the data in Table 7
were used to construct the proposed binary search tree for
fault detection in the second step of the proposed mecha-
nism, which is illustrated in Fig. 16.

To evaluate the performance of the proposed mecha-
nism, we injected a fault into each layer of the virtualized
compute host and measured the time from fault injection to
fault detection. Each injected fault for a particular layer is
defined as a fault case in this experiments. We repeated
each fault case 10 times and calculated the corresponding
average fault-case detection time, as shown in Table 8. The
fault cases with the corresponding injection methods used
in this study are listed as follows:

� VM network: disable the VM network interface.
� Guest OS: crash the guest OS kernel.
� VM process: kill the VM process.
� Network: disable the host network interface.
� OS: crash the host OS kernel.
� Hardware: simulate high CPU temperature by inject-

ing error values into the detector and immediately
crash the host OS.

� Power: power off the host.
The experimental results obtained for the fault cases are

presented in Table 8. Notably, the fault detection times for
both the network layer fault and the hardware layer fault
were relatively long. The average fault-case detection time

for the network layer fault was long because the network
fault might have been transient (e.g., due to a busy network);
thus, the proposedmechanism required 29 s in the third step
to distinguish whether the fault was transient. In addition,
the average fault-case detection time for the hardware layer
was long because the proposedmechanism sequentially que-
ried multiple detectors (D6, D0, D3, D2, and D1) to identify
that the fault was at the hardware layer (Fig. 16).

On the basis of the fault type percentage (Pi) in Table 7
and the average fault-case detection times in Table 8, the
ADT of the proposed mechanism from the experiment was
8.91 s, which is 70.3 percent faster than the detection time
(30 s) of the system layer heartbeating approach [1], [30],
[31]. The ADT from experiments was slightly lower than the
theoretical ADT, which was calculated to be 9.4 s. This was
possibly because a detector might have returned the detec-
tion result immediately when the layer was healthy. For
example, the detector of the VM network layer takes less
than 0.1 s to obtain the detection result if the network layer
is healthy (not faulty).

5.1 Comparison With Zhao et al.Method

The decision tree built by the Zhao et al.method is shown in
Fig. 17. Using their detector definitions, we treat detectors
in the power and hardware layers as built-in sensors, and
we treat the other detectors as virtual sensors. According to
Fig. 17, five detectors are required to accurately determine
that there are no faults in the target system. If the target sys-
tem fails during VM network detection, any fault is identi-
fied as a VM network fault; this means that the Zhao et al.
method cannot be used for online fault detection.

To apply the Zhao et al. method to online fault detection,
we must first determine that a fault has occurred, which can

TABLE 6
Percentage of System Outage Types With no Consideration of
System Maintenance in Two Clusters: Platinum and Titan [22]

Software(%) Hardware(%) Power(%)

Platinum 99.9 0.1 0

Titan 60.6 5.1 34.3

Average 80.3 2.6 17.2

TABLE 7
Information for Each Layer of a Virtualized Compute Host in the

Cloud System

Layer i Layer name Ti (s) Pi (%)

6 VM Network 2.0 16.1

5 Guest OS 1.0 16.1

4 VM Process 1.1 16.1

3 Network 0.53 16.1

2 Host OS 3.45 16.1

1 Hardware 0.81 2.6

0 Power 0.06 17.2

Fig. 16. Proposed mechanism for case study.

TABLE 8
Average Fault-Case Detection Time (in Seconds) for Each Fault

Case (ED: Experimental Data; TD: Theoretical Data; Net:
Network)

Power HW Host
OS

Net VM
process

Guest
OS

VM
Net

ED 1.64 5.96 6.28 36.28 3.68 3.68 2.68

TD 2.06 6.85 6.85 35.04 4.69 4.69 3.59
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be achieved by performing detection on the highest layer.
The new corresponding decision tree is presented in Fig. 18.
This method, however, still cannot detect transient faults.
For example, if a transient fault occurs, the detection system
considers the target system to be faulty. This is an incorrect
judgment because the target system should be judged as
healthy after the transient fault has disappeared.

Therefore, in the experiment, we assumed that all faults
were permanent. In the experiment, the ADT of the Zhao
et al.method was 4.58 seconds.

5.2 Comparison With Wang et al.Method

The fault diagnostic tree built by the Wang et al. method is
presented in Fig. 19. According to the fault diagnostic tree,
two detectors are required to determine that there are no
faults in the target system. As with the Zhao et al. method
and for the same reasons, the Wang et al. method cannot be
used for online fault detection.

To apply the Wang et al. method for online fault detec-
tion, we must first determine that a fault has occurred,
which can be achieved by performing detection on the high-
est layer. The new corresponding fault diagnostic tree is
presented in Fig. 20. However, as is the case with the Zhao
et al. method and for the same reasons, the Wang et al.
method still cannot detect transient faults.

Therefore, in the experiment, we assumed all faults to be
permanent. In the experiment, the ADT of the Wang et al.
method was 6.17 seconds.

The proposed mechanism can save time in cases where
transient fault identification is relevant. Specifically, in the

experiments, the ADT of the proposed mechanism was 4.24
seconds when there were no transient faults, outperforming
its counterparts (Fig. 21). Furthermore, the detection time of
the proposed mechanism was 70.3 percent shorter than that
required by system layer heartbeating without any auxiliary
detection mechanism.

5.3 Influence of Network Fault

The experimental results demonstrated that network faults
greatly affect the ADT of the proposed mechanism; this is
indicated by the finding that the detection time for the net-
work fault was at least five times as long as those for other
fault cases. This is because the network layer detector must
consider the transient fault problem (such as packet loss or
a busy network). On the basis of the default fault detection
time of existing high-availability cloud systems (such as
VMware vSphere HA [1], HAProxy [30], and Pacemaker
[31]), we set the maximum duration of network layer faults
to 30 s. However, the maximum duration of network faults
is tunable. The value could be as high as 120 s in an unreli-
able network environment, according to the operation of

Fig. 17. Decision tree from Zhao et al.method.

Fig. 18. New decision tree.

Fig. 19. Fault diagnostic tree from the Wang et al.method.

Fig. 20. New fault diagnostic tree.

Fig. 21. Comparison of our proposed mechanism with counterpart meth-
ods with respect to performance in the absence of transient faults.
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VMware vSphere HA. When we increased the maximum
duration of network layer faults to 120 s in our mechanism,
the new theoretical ADT based on Table 7 became 23.85 s,
which was more than twice as long as the original theoreti-
cal ADT. In scenarios where the system is running in a
highly reliable network environment, the maximum dura-
tion of network faults can be reduced further. If we assume
that the value could be decreased to 10 s, the new theoretical
ADT would be 6.14 s, which is 65 percent of the original the-
oretical ADT. In conclusion, the ADT of the proposed fault
detection mechanism can be very short only if the cloud sys-
tem has a highly reliable networking infrastructure. In
either case, the proposed mechanism is expected to outper-
form the system layer heartbeating approach, especially in
an unreliable networking environment (23.85 versus 120 s,
with the assumption of the fault percentages in Table 7).

6 EXTENSION TO PARALLEL DETECTION

In this section, we discuss the application of our proposed
mechanism to the case of parallel detection. First, we
explain why direct parallel detection cannot be used in
many cases and then present how one ought to use our pro-
posed mechanism in parallel detection. Second, we evalu-
ated the performance of the proposed parallel detection
mechanism on a system of five layers. We used five instead
of seven layers (as shown in Table 7) in the experiments
because the power, hardware, and OS detectors cannot run
concurrently in a physical host.

6.1 Parallel Detection Mechanism

In practice, some detectors, especially hardware detectors,
cannot be queried in parallel. For example, the detectors for
the host OS, hardware, and power components cannot be
queried concurrently if they are implemented on IPMI. To
support parallel detection, we can only use fault detectors
that can be queried concurrently. Therefore, we cannot use
a parallel detection mechanism for the seven-layer system
shown in Table 7. To enable parallel detection, we must
reorganize the seven-layer system into a five-layer system,
comprising the host OS, network, VM process, guest OS,
and VM network layers.

A naive parallel detection mechanism, which periodi-
cally queries all detectors in parallel and collects the detec-
tion results, can be used in the case of parallel detection
without any consideration of transient faults. However, in

cases where transient faults must be considered, this
approach may lead to misjudgment. For example, as illus-
trated in Fig. 22, a transient network fault was injected into
the aforementioned five-layer cloud system at 0.8 s after the
start of periodic parallel detection. The network detector
responded that the network service was not faulty at the
time point of 0.6 s, and other detectors subsequently
responded by sending their detection results after the time
point of 0.8 s, as shown in Fig. 22 (right panel). Accordingly,
the system misjudged the VM process as faulty. This could
lead to a catastrophe where the VM is destroyed and then
restarted. To solve the problem shown in Fig. 22, we can
reuse the idea underlying the mechanism proposed in Sec-
tion 3, as follows:

1) The system raises an alarm when a fault occurs. This
can be achieved through continuous detection of the
highest layer (LN�1).

2) The system executes the following tasks after an
alarm has been issued:
a) Send a message to each layer detector (D0 to

DN�2) for fault detection.
b) Wait until all response messages from the layer

detectors have been received.
c) Use a binary search algorithm to find the faulty

layer based on the response results. Notably,
step 2c occurs very quickly. Therefore, in prac-
tice, a sequential search algorithm can be used in
place of a binary search algorithm.

3) The system determines whether the fault is a perma-
nent fault and returns the result.

The soundness of this parallel detection mechanism is
demonstrated in Sections 3.1, 3.2, and 3.3.

6.2 Experiment Results of Parallel Fault Detection

Table 9 lists the average fault-case detection times for each
fault case detected using the proposed parallel detection
mechanism on the five-layer system. In the experiments, we
reused the settings of the environment and the fault injec-
tion methods described in Section 5. The major differences
between the settings pertained to the inapplicability of the
power and hardware detectors to the experiment featuring
parallel detection. The experimental results listed in Tables 8
and 9 demonstrate the following.

1) As presented in Table 9, the average fault-case detec-
tion times were very similar, except for the average
fault-case detection time for the network layer. This
similarity is because Steps 1 and 2 in the parallel
detection mechanism had the same execution time
for every fault case. The average fault-case detection
time for the network layer was much longer than
that for the other layers because in Step 3, a waiting

Fig. 22. Case of transient fault in naive periodic parallel detection, where
a network transient fault is injected at the time point of 0.8 s.

TABLE 9
Average Fault-Case Detection Time (in Seconds) for Each Fault

Case in Parallel Detection

Host OS Network VM process Guest OS VMNetwork

4.79 33.76 4.83 4.80 4.82
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time of 29 s was required for transient fault
verification.

2) The parallel detection mechanism outperformed the
proposed mechanism with the proposed sequential
dynamic-programming–based binary search tree
algorithm in terms of the average fault-case detection
time for the host OS layer. Nonetheless, the sequen-
tial mechanism was approximately 1 s faster (1.17
and 1.49 s faster, respectively) when the hardware
and host OS faults were injected; the mechanism was
3.15 s slower when the power fault was injected.
This is because the tree structure of the sequential
algorithm prefers power fault detection.

3) The sequential mechanism outperformed the parallel
mechanism in terms of the average fault-case detec-
tion time for the VM process, guest OS, and VM net-
work layers by 1.15, 1.12, and 2.14 s, respectively.
This is because the parallel mechanism had to wait
for the slowest fault detector (host OS detector) and
because the software-based detectors were faster
than the slowest fault detector.

4) The ADT of the parallel mechanism was 9.48 s,
which was 0.57 s slower than that of the sequential
mechanism. This is because the parallel mechanism
could not fully utilize fast hardware-based detection
components and had to wait for the response of the
slowest fault detector.

7 CONCLUSION AND FUTURE RESEARCH

DIRECTIONS

In this paper, we propose an efficient online liveness fault
detection mechanism for multilayer cloud computing sys-
tems, in particular for virtualized compute hosts on the
cloud. The proposed mechanism is based on the integration
of existing detectors to quickly detect liveness faults, rather
than on new detectors. In the virtualized compute hosts
designed for the experiment, the proposed mechanism sig-
nificantly reduced the time required for detecting certain
liveness faults by using detectors in each layer, thereby
improving average fault detection efficiency. Our proposed
mechanism also exhibited the highest efficiency under
experimental conditions. According to the experimental
results in Section 5, the proposed mechanism, relative to
system layer heartbeating, required a 70.3 percent shorter
ADT and had the added ability to locate the specific layer of
the fault while yielding comparable reliability. Locating
faults within specific layers allows for effective application
of fault recovery methods. In addition, our proposed mech-
anism had a 7.4 and 31.3 percent shorter ADT relative to
two counterpart methods in the literature.

Our proposed mechanism is limited in that detectors at a
given layer are unable to detect faults in other layers. Detec-
tion time in our method can be reduced if a layer’s detector
can detect and distinguish faults in both its layer and other
layers. This characteristic within a multilayer system is
termed detector dependency. The following is an example.
Because a VM network detector detects faults through Inter-
net control message protocol, VM network detection is
based on the network layer. If the VM network layer detec-
tor can detect a network layer fault, there should be a

shortcut from the VM network detector node to the network
detector node in the proposed binary search tree. Thus,
detection on all layers above the network layer can be
skipped, and detection time can be reduced. This is a poten-
tial topic for future research. Future studies can construct a
more reliable model that covers a sequence of faults (i.e.,
more than one fault) occurring in one detection round.
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